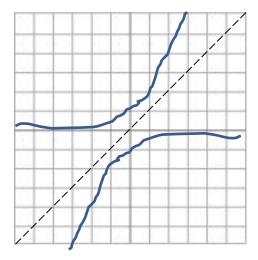
More About Logs


Graphs of logs

What does the graph of a logarithm look like:

Exponential function: $y = 2^x$

Logarithmic function: $y = log_2 x$

Inverse functions are symmetric about the line y = x

Important Logarithms

1. Log base 10 $\rightarrow log_{10}$ is called the common log.

It is usually written without the base: $log_{10} x = log x$

e= Euler's number = 2.71828...

2. Log base e $\rightarrow log_e$ is called the natural log.

It is usually written as In: $log_e x = ln x$

Evaluating logs with a calculator

Ex:
$$log_e 9 = ln 9 =$$
 Ln 9 = 2.197

Ex: $log_7 9 = ??$

Change of Base Formula

To find the value of a logarithm that has a base other than 10 or e, use the following:

Change of Base Formula: $log_b a = \frac{log a}{log b}$

Ex:
$$log_7 9 = \frac{log 9}{log 7} = \frac{0.9542}{0.8451} = 1.129$$

Ex: Solve for x:
$$100 = 7^x \rightarrow x = log_7 100 = \frac{log_1 100}{log_7} = \frac{2}{0.8451} = 2.367$$